Mathematical laws are invariant; they do not change with time. Just as 2+3=5 today, so it did yesterday, and so it will tomorrow. All mathematical laws are such that they remain the same at all times. They are absolute. It’s not that 2+3 usually equals 5; rather, it always equals 5. There are absolutely no exceptions....
How then do we account for the origin and properties of numbers or the laws of mathematics that describe them? Let’s consider first the naturalistic, or evolutionary, view. In this way of thinking, people attempt to explain the characteristics of a modern object by considering how it gradually evolved over millions or billions of years from something less complex. If we applied this concept to mathematics, we would ask, “From what did numbers evolve? What were numbers before they were numbers? When did the physical universe begin obeying mathematical laws?”
Just take one number as a token case. From what simpler number did the number 7 evolve? Was 7 once 3? Did 3 have to transition through 4, 5, and 6 before it became 7? When did the negative numbers evolve? ...
If these sorts of questions sound silly, it is because they are. The evolution of numbers makes no sense whatsoever. 7 has always been 7, just as 3 has always been 3. Likewise, the expression 2+3=5 was as true at the beginning of time as it is today. Mathematical laws and the numbers they govern are invariant—they do not change with time and, therefore, cannot have evolved from anything!
The secularist is truly stuck when it comes to mathematics. He knows that mathematical truths existed before human beings discovered them....
No comments:
Post a Comment